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Abstract 

In accordance with the philosophical approach and its mathematical implications that 
were derived in Part I of this series (see p. 433), this paper deals explicitly with the 
manifestations of matter that are concerned with its electromagnetic and inertial proper- 
ties. It is demonstrated that a logically and mathematically generalized version of electro- 
magnetism emerges from extending the Faraday-Maxwell field approach, so as to fully 
unify these features of matter with the field description of matter itself. It is then shown 
how the most general expression of matter (according to the axioms of this theory), in 
terms of two-component spinor fields in a Riemannian space, leads to a derivation of the 
inertial properties of matter. The mass field so-derived (1) is a positive-definite function of 
the (global) coordinates--implying that gravitational forces can only be attractive; 
(2) approaches a discrete spectrum of values as the mutual coupling among the matter 
components of the closed system becomes arbitrarily weak; (3) predicts mass doublets 
in this approximation; and (4) approaches zero as the closed system becomes depleted of 
all other matter (in accordance with the Mach principle). It is also proven, as a consequence 
of the same field theory, that electromagnetic forces can be attractive or repulsive, 
depending on certain features of the geometrical fields of the Riemannian space. 

1. Electromagnetic Theory 

In  view o f  the logical  impl ica t ion  o f  the general ized M a c h  pr incip le  
regard ing  the e lementar i ty  o f  the in terac t ion  ra ther  than  the free 
par t ic le ,  there  fol lows an in te rpre ta t ion  o f  the  Maxwel l  field equat ions  
tha t  differs f rom the usual  one. The  in te rac t ion  is descr ibed here in 
te rms o f  the coupl ing  o f  field var iables  which are  associa ted  with the 
componen t s  o f  a closed mater ia l  system. Elec t romagnet ic  p h e n o m e n a  are  
expressible in terms o f  two types o f  field variables.  One set relates to the  
field intensi ty tha t  is convent ional ly  associa ted with  the electric and  magnet ic  
field variables.  The o ther  set relates to the  ' source  fields' tha t  are convent ion-  
al ly identif ied with the charge densi ty  and  its mot ion .  Accord ing  to the 
in te rp re ta t ion  tha t  is advoca ted  here, Maxwel l ' s  equat ions  are no t  more  
than  a covar ian t  prescr ip t ion  for  de te rmining  one o f  these types of  electro- 
magnet ic  field var iables  in terms o f  the other.  Thus,  Maxwel l ' s  equat ions  
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are interpreted as an identity. The actual physical observable is not described 
until the field variables describing one of the interacting components of the 
system are coupled to the field variables of the other interacting com- 
ponents of the closed system (in a relativistically invariant way). 

With this interpretation, it follows that for each component of a closed 
system, there is a separate set of Maxwell's equations. It also follows that 
a matter component cannot be allowed to interact with its own force field 
--such a description would be redundant within this interpretation. Thus, 
for the formalism to be logically consistent with this feature, it must be so- 
constructed to leave out those mathematical terms that represent a quantity 
of matter acting on itself. The disappearance of these self-energy terms 
automatically removes divergent quantities which appear in the conventional 
quantum field theory and have their roots in the classical Lorentz theory of 
electrodynamics. Thus, these divergences do not have to be removed here, 
as it is done in the particle theories; they are not present from the outset! 

Two other important deviations from the conventional theories follow 
from the proposed interpretation of the electromagnetic field equations. 
For it follows here that if the source fields should vanish, then the field 
intensities must also be identically zero, and vice versa. Thus, this approach 
rejects the homogeneous solutions of Maxwell's equations as unphysical; 
only the particular solutions are acceptable within the framework of this 
theory. The boundary conditions on the latter solutions of Maxwell's 
equations are automatically supplied by the feature of the coupled matter 
fields, which describe the remainder of the interacting system. These are 
the solutions of the coupled nonlinear matter field equations (to be derived 
in the next section) for the given closed system that is described. The latter 
property of the field solutions of this theory is a feature that any formalism 
must have if it is to incorporate the Mach principle. 

It also follows from this interpretation of Maxwell's equations that the 
concept of the source-free radiation field and the photon (as an elementary 
particle) must be abandoned. This is because both of these follow from the 
homogeneous solutions of Maxwell's equations. The photon concept, which 
in particle theory is a quantum of the source-free radiation field, is replaced 
here with the process of energy-momentum transfer between systems of 
charged particles. As a consequence of this conclusion, it follows, for 
example, that an atom in an excited state would not decay spontaneously, 
with the emission of a free photon. The excited atom will only emit a 
signal (a quantity of energy-momentum transfer) if there is present in the 
system another atom to absorb this signal Such a concept has already been 
discussed by other authors---it is commonly referred to as action-at-a- 
distance (or, more correctly, delayed-action-at-a-distance). The major 
difference between these previous action-at-a-distance theories and the 
present one is that the former are particle theories, in which one describes 
discrete charged matter trajectories in a 4n-dimensional space (for an 
n-particle system), while this theory is a continuous field theory in which 
one has n coupled fields--all in the same four-dimensional space-time. 
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It should be remarked at this point that one motivation for the rejection 
o f  the photon, as a bona fide interacting particle, is the fact that the inter- 
pretation of most experimental effects which are conventionally attributed 
to the properties of free photons, can be equally explained in terms of the 
electromagnetic forces between charged ('quantized') matter that interacts 
over a large distance. This applies to the Compton effect, the photoelectric 
effect, bremsstrahlung, etc. It seems to this author that there are in fact 
only two sets of experimental data which are conventionally attributed to 
the properties of photons, when there is no matter around or where matter 
plays no role. One of these is the spectrum of blackbody radiation. The other 
is the data that is conventionally interpreted in terms of the annihilation 
of a particle-antiparticle pair, with the simultaneous creation of a pair of 
photons. It will be shown in Part IV (Sachs, 197 lc) how both of these effects 
can be predicted from a particular bound state of the particle-antiparticle 
pair. Thus matter is not annihilated (or created) here, nor are photons 
created in order to explain the data. It is then concluded from these results 
that 'photons' need not be introduced as bona fide interacting particles to 
explain any phase of physical experimentation. 

Finally, the interpretation of the electromagnetic field equations as an 
identity, and the rejection of the photon as an interacting particle, leads to 
the admissibility of a reduction of the vector representation of this theory to 
a lower dimensional form, if this would be possible within a covariant 
description of the theory. Such a possibility is indeed hinted at by the group 
theoretical feature, that the spinor representation is the most primitive one 
for any relativistically covariant formalism. Indeed, it has been shown 
(Sachs & Schwebel, 1962; Sachs, 1964a, 1971a) that a (first-rank) spinor 
form of the electromagnetic equations does contain all of the physical 
predictions of the conventional vector representation of the theory--in 
addition to extra predictions that have no counterpart in the vector theory. 

Generalization to the Elementary Interaction Formalism 
According to the interpretation of the electromagnetic field equations as 

identities, it follows (Sachs, 1964a) that these equations must be labelled, 
according to each of the interacting components of the closed system. In 
terms of the standard representation of the theory, we have 

V x E (') + a ~ H (") = 0 V . H  (") = 0 

V X H (~) - 0~ E(") = 4~'j ~") V .E  ~") = 4rrp (") (1.1) 

(c= 1) 

where (u) stands for the uth interacting field component of the physical 
closed system. 

The condition concluded above, that it would be logically inconsistent, 
within this theory, to allow a field component to interact with itself, implies 
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that the conservation equations must be generalized in the following way: 

_ _  1 V.  H (~)) E (") j(~) 1 00 ~ (E(.).E(V) + Hr + 47r Y" (E~u) x = - ~ . 
8 ~  uCv u#v u~=v 

1 0 ~  ~ (E (") X H (v)) = ~ (p(")E (") +j(") X H (")) (1.1') 
4rr u#v u~v 

where again, all fields are mapped in the same space-time coordinate 
system. 

Clearly, as the number of interacting field components increases indefi- 
nitely, the corresponding macroscopic conservation equations (1.1') start 
to lose sight of the underlying grid [that is labelled by (u) and (v)], and the 
resulting equations subsequently 'blur' into the standard form of the 
conservation equations in which these labels do not appear. In the latter 
form of the equations, the variables E, H, etc. are the sums of such variables 
over the indices (u) and (v). Thus the conservation equations (1.1') do not 
differ in their predictions from the standard equations, when applied to low 
energy macroscopic phenomena (e.g., the application of Ohm's law, recep- 
tion and transmission of radio signals, the scattering of 'electromagnetic 
radiation' from metallic or dielectric objects, etc.). On the other hand, the 
transmission of radio signals for example, would have to be viewed here in 
a different way. In the conventional case, one asserts that a radio antenna 
emits a signal at some time t. The signal then proceeds on its own, and at the 
later time, t + R/c, another antenna that is R cm away absorbs this signal. 
The later event is then said to be independent of the emitting antenna. 

In contrast, the elementary interaction approach must, in principle, 
consider both the emitting antenna and the absorbing antenna together in 
terms of their mutual influence. Thus, one cannot reject the reaction of the 
emitting antenna to the absorbing antenna as is conventionally done. In 
practice, of course, the coupling between an individual radio set (or a 
city full of radio sets !) to the radio station transmitting antenna is certainly 
sufficiently weak to allow the description of the emitter and absorbers in 
terms of the solutions of uncoupled equations. This case corresponds to the 
limit of sufficiently small energy-momentum transfer, in which the predic- 
tions of the standard electromagnetic conservation equations and the 
generalized ones (1.1') would merge. The latter situation corresponds to 
Faraday's original conception of the 'field' (for the 'emitter') and the 
uncoupled 'test charge' (the 'absorber'). 

A Spinor Formulation of Electromagnetic Tkeory (Sachs & Schwebel, 1962; 
Sachs, 1964a, 1971a) 

The Maxwell formulation of electromagnetism was the first discovered 
law of physics that was found to be covariant with respect to the trans- 
formations of special relativity theory (the Poincar6 group). The form of 
these field equations is in terms of a vector representation of the group. 
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However, it was found by Einstein & Mayer (1932) that the most primitive 
expression of any relativisfically covariant formalism is in terms of two- 
dimensional complex, hermitian representations, whose basis functions are 
spinor variables. Thus, the insistence on using the four-dimensional 
representation of this group to describe electromagnetism would have to be 
based on physical assumptions that are in addition to the symmetry 
requirement of relativity theory. One such additional assumption that is 
made in elementary particle theory, is that a vector, massless particle-- 
the photon--must be the primitive entity with which to describe electro- 
magnetic coupling. 

For the reasons discussed earlier, the theory advocated here does not 
accept the photon as a bona fide interacting particle. It then follows that a 
search for the lower-dimensional (spinor) representation of the electro- 
magnetic field equations is in order. This will now be demonstrated by 
showing that Maxwell's field equations indeed factorize into a pair of 
uncoupled two-component spinor equations. 

To demonstrate such a decomposition of Maxwell's equations, an 
initial identification must be made between the real components of the 
vector-tensor language, E, H, and the complex components of spinor 
variables. To do this, consider the complex vector whose spatial and 
temporal components are as follows: 

Gk = (H + iE)k Go = 0 

and let the structuring of the two-component spinor variables be guided 
by the correspondence between the features of the matrix representations of 
the Poincar6 group--the hermitian components of a quaternion--and 
those of a 4-vector 

( X o -  x3 - ( x ~  - Ix2)~ x,  
 .x.= 0x0-o.r =- - ( x ,  + ix ) Xo + (1 62~ 

\ x 3 /  

Considering this correspondence, an initial guess at the spinor structure of 
the electromagnetic equations in terms of the standard variables in a given 
Lorentzframe is as follows: 

\J1 + ij2] 
(1.3) 

It is readily verified by direct substitution, with the quaternion differential 
operator defined as follows: 

% O" = a0 0 ~ - ~ . V  ( 1 . 4 )  
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that the two 2-component spinor equations 

% 0~' cp~, = T,, (~ = 1, 2) (1.5) 

are in one-to-one correspondence with the standard form of Maxwell's 
equations (1.1). 

At this stage, it is important to note that the identification (1.3) between 
the variables of the vector and spinor representations of the theory is only 
restricted to a given frame of reference. For, with the application of the 
transformations of the Poincar6 group, the spinor variables transform in 
a way that there is no form-invariance with respect to the transformed 
variables E and H, i.e. 

X - + X  t 

~(E,H) --v-+ ~'(E', I-r) 

This is so because these relate to inequivalent representations of the 
Poincar6 group. 

But the physical requirement of the field theory does not require such 
form-invariant correspondence. It only requires a form-invariant corre- 
spondence in the invariants and conservation equations of the theory. This 
is because it is the latter, and not the field equations themselves, that are 
directly related to the observables. In view of the empirical validity of 
Maxwell's formalism in matching the data, it is required here that all of the 
invariants and conservation equations of the vector representation of the 
theory must correspond to at least some of those of the more general 
(spinor) formulation. Indeed, it will be shown below that the spinor formu- 
lation (1.5) of this theory contains invariants and conservation equations 
that are in one-to-one correspondence with all of those of the vector-tensor 
form of the theory. Thus, the spinor formulation predicts all of the physical 
consequences of the usual formulation. However, the spinor formulation 
contains additional invariants and conservation equations that have no 
counterpart in the usual formalism. It is then concluded that the 2-com- 
ponent spinor formulation (1.5) of electromagnetism is a true generalization 
of the vector-tensor formulation. 

Invariants and Conservation Equations (Sachs & Schwebel, 1962) 
The 2-component spinor equations (1.5) are relativistically covariant, if 

and only if x-,x. 
~%(x) > 99~,'(x') = S~v~.(x) (1.6a) 

Y~(x) x~,> Y j ( x ' )  = (S*) - l  Y~(x) (1.6b) 

where {S} are the solutions of the matrix equations 

S t tr ~ S = c~ ~ % 

and c~, ~ = 0 v x~' are the elements of the corresponding group of continuous 
coordinate transformations of special relativity theory. It follows from the 
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algebraic properties of spinor variables that the invariant metrics of the 
spinor formulation of electromagnetic theory are the terms 

~plr e~2 = J1 and Ylr 6Y2 = J2 (1.7) 

where 'tr' denotes a transposed spinor and 

is the Levi-Civita matrix. 
If we now substitute into these invariants the identification with the 

conventional variables (1.3), then the following one-to-one correspondence 
between the invariants of the two formalisms results 

Ja <=> (E 2 - H 2) + 2 i E . H  (1.8a) 

J2 ~ j2 _ pz (1.8b) 

The complex invariant Jx of the spinor formalism then corresponds to two 
real invariants--which are the invariants of the standard formalism. The 
second invariant dz is a real number and corresponds to the modulus of the 
4-vector j~. 

In addition to the two invariants, J~ and J2, it follows from the trans- 
formation properties (1.6) that 

I ~  = q)~* Yr (e, f l= 1,2) (1.9) 

are four additional complex invariants (eight real invariants) of this formal- 
ism. These are to be compared with the one invariant, juan', which is used 
to describe the electromagnetic coupling in the vector representation. The 
extra invariants in equation (1.9) have no counterpart among the invariants 
of the standard formulation of electromagnetic theory. 

In summary, we have established a one-to-one correspondence between 
some of the invariants of the spinor formulation of electromagnetic theory 
and all of those of the standard formalism. Additional invariants in the 
factorized spinor representation have no counterpart in the vector theory. 
It now remains to be shown that the generalization of this type carries over 
to the conservation equations. 

If we multiply equation (1.5) on the left with the hermitian adjoint of q~g, 

and take the hermitian adjoint of this equation, while interchanging the 
labels e and fl, the following equation results: 

0"(~/3* o-. ~.) = (q~g* r• + Yg*9~.) (1.10) 

These, in turn, correspond to eight real conservation equations, as con- 
trasted with the four real conservation equations (1.1'), which have the 
equivalent form 

O"Tt, ~=K€ (1.11) 
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of the vector theory. Here, T~ ~ is the energy-momentum tensor for the 
electromagnetic field and 

K~ = {(E + j •  

is the four-Lorentz force density. 
It follows from the invariants (1.9) that the eight real force density terms 

on the right-hand side of equation (1.10) are separately scalar fields. Thus, 
equations (1.10) represents four complex scalar conservation equations, 
rather than the single vector conservation equation (1.11) of the standard 
formalism. 

To exhibit the correspondence between the conservation equations of the 
standard formalism and some of those contained in equation (1.10), consider 
the sum of equation (1.10) with ~ =/3 = 1 and equation (1.10) with 

=/3 = 2. It is readily verified, with the substitution of the identification 
(1.3) with the standard variables, that the sum of equations mentioned 
above yields the conservation of energy equation of the standard theory: 

13O(E 2 + H2 ) + 1 V.(E • H) = - E . j  

It is also found that the conservation of momentum equations [in equation 
(1.1')] follow from other sums and differences of the conservation 
equations (1.10). 

The Lagrangian 
The least action principle yields the factorized spinor equations (1.5) 

when the Lagrangian density has the form: 
2 

5PM = igM ~ (-1)~ go J(%, 0~q% - 2Y~,) + h.c. 
~t=l 

In this functional form, we have chosen to write the (otherwise) arbitrary 
set of two coefficients for each of the two spinor fields, Cpl and ~o 2 as  ( - -1)  ~, 
because of a later application of the theory to electron-positron systems 
(Sachs, 1971c). With this choice, we will show that one obtains from the 
formalism a prediction of a particular bound state of the electron-positron 
pair, which can be associated with all of the observed properties associated 
with pair annihilation and creation. 

When this Lagrangian density is varied with respect to qq * and Cpz* we 
obtain the two spinor equations (1.5). The constant gM cancels out (as it 
appears on both sides of the equation). However, when this Lagrangian 
is varied with respect to the matter field variables that are implicit in Y~, 
we obtain an interaction that corresponds to the term 

2 
2igM ~ (-1)~q%*Y~+h.c. 

This interaction has no counterpart in the usual formulation of electro- 
magnetic theory. It will be shown (Part IV) to yield an important contribu- 
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tion to the fine structure of hydrogen--it predicts a Lamb splitting that is 
in very good numerical agreement with the data. 

Note that the field term that gM multiplies has the dimension of energy 
density per length. Thus, the fundamental constant gA4 must have the 
dimension of length. It will be found from the analysis of the hydrogen 
spectrum that this constant is of the order of 2 • 10 -14 cm. We then see 
that a new fundamental constant (of this magnitude) necessarily enters the 
theory as a consequence of the factorization of the Maxwell formalism into 
a pair of uncoupled 2-component spinor field equations [equation (1.5)]. 

The next generalization of the theory--that would fully incorporate the 
Mach principle--implies that for each matter component of a closed 
system, there is a separate set of spinor equations 

% 0u q~U)(x) = Y'~")(x) (1.12) 

with the corresponding set of conservation equations 

u:/:v u~v 

Using the method of Fourier transforms, it is readily verified (Sachs, 
1971a) that the particular solutions of the electromagnetic equations 
(1.12)--the only solutions that are acceptable within the proposed theory-- 
are the following for a point charge, e, at the origin, acting on a test charge 
at r 

x3 (x l  -- ix2~ 
q)' :-(ie/ra)(xl + ix2) q)2=(ie/r3) \ -x3 ] (1.14) 

These are the field solutions that replace the solutions 

Ej = exj/r 3, Hj = 0 (j  = 1, 2, 3) 

of the conventional formalism, for a point charge at the origin, acting on a 
test charge at r. 

Using this result, it was shown (Sachs, 1971 a) that with the proper choice 
for the source field Y~ of the test point charge, the predictions of this theory 
are in one-to-one correspondence with those of the conventional prediction 
of the Coulomb force between the point charges considered. 

Even though the predictions agree in this particular application of the 
spinor representation of electromagnetism, with those of the vector repre- 
sentation of the theory, it is important to note that the two theories, in their 
general forms, are quite different. Where the approximations used above 
(e.g., a fixed point charge at a special place) would become inaccurate, 
differences would occur in the outcome of both theories. The reason is that, 
in general, the spinor formulation contains more predictions than the 
vector formulation. These differences, however, do not show up until one 
is forced to use a full relativistic treatment. Some of these effects will be 
derived in Part IV (Sachs, 1971c) that treats 'pair annihilation' and the 
fine structure of hydrogen. 
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The Electromagnetic 4-Potential 

We will see in the section that follows that an interaction term must 
appear in the matter field equations which entails the coupling of the 
electromagnetic current density, for one interacting component of the 
system, to the electromagnetic 4-potential, for the other interacting com- 
ponents of the system. In terms of the spinor fields of the matter equations, 
the 4-current density has the usual form 

j(.") = e~ (") ~.  ~b (") or e~/(") * % ~/(") (1.15a) 

The 4-potential solves the vector equation [S]A~ u) = 47rj(~ u) and 

A(") = e f j(v")(x')S(x - x ' ) d r  (1.15b) la 

are the particular solutions of this equation, where S ( x  - x ')  are the Green's 
functions for the field equation in A~ "). Among the different possibilities 
for S, the elementary interaction approach requires that only the 
symmetrized form can be used. This is the function: 

1 f d4k  
S ( x  - x') = ~ k p k---pp exp {t[k'(xt, - xu')] } (1.16) 

1 
= 2lr - r ' [  {3[(t - t ' )  - [r  - r ' [ ]  + 3 [ ( t  - t ' )  + [r  - r ' [ ] }  

which corresponds to an average of the retarded and advanced terms in the 
potential. 

The retarded potential alone, is the usual one that is used in electro- 
dynamics. It is consistent with the particle theory in which one considers 
one charged particle to emit a signal at some initial time, to, and the second 
charged particle to absorb this signal at the later time to + R/e, if the particles 
are separated by R era. With such a model, one does not consider that the 
advanced potential can play any role, since it seems to imply an effect 
that precedes its cause, thereby implying a violation of the principle of 
causality. 

On the other hand, when 'emitter' and 'absorber' are only names which 
are assigned for convenience--when the overall description is covariant 
with respect to the interchange of all of the variables associated with these 
two components of an interacting system--then such a theory must select 
only that Green's function that yields a potential which is symmetric with 
respect to the advanced and retarded terms. As we have indicated earlier, 
the incorporation of the Math  principle in the field theory under study, 
requires such a symmetry between the emitter and the absorber and there- 
fore uniquely chooses this Green's function in the description ~ ~" )  oK ~ . This 
result will play an important role in the application of this theory to electro- 
dynamics (Sachs, 1971b, c). 
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In this section we have concentrated on the form of the electromagnetic 
equations that is implied by the field theory of elementary interactions. In 
the following section, we will derive the equations that relate to the inertial 
properties of matter and its quantum mechanical nature. 

2. Theory of Inertia and the Matter Field Equations 
We have already discussed the general mathematical structure of a field 

theory of matter which must follow from the three axioms of this study 
It has been argued that the most primitive form of the field equations 
to describe matter must be in terms of at least two coupled non-linear 
spinor field equations. In the preceding section we discussed the form 
and the interpretation of the electromagnetic coupling that must eventually 
appear in the matter field equations. 

In this section, the explicit mathematical structure of the matter field 
equations will be derived, in accordance with the three underlying axioms 
of this theory. It will be shown that, without inserting any mass parameter 
into the equations, a particular mapping of time-reversed 2-component 
spinor fields in a curved space-time automatically yields a positive-definite 
field in the place where the mass parameter is normally inserted in a Dirac- 
type wave equation. Further, the imposition of gauge invariance on these 
field equations yields the result that as a consequence of the structure of 
the space-time, a non-positive-definite function must appear in the matter 
field equations that has the form of a vector coupling potential. These 
results must, of course, persist in the local limit of the theory--the limit 
where the special relativistic form of the theory is a good mathematical 
approximation for the generally covariant equations. The implication of 
these derived features of the formalism is then that gravitational forces can 
have only one sign--they are either attractive or repulsive, not both, but 
that electromagnetic forces can be attractive or repulsive. In the former 
case, it only takes one observation to establish whether the gravitational 
force is attractive or repulsive (e.g. the earth-sun attraction)--thereby 
establishing the prediction that gravitational forces must always be attrac- 
tive. These derived results are in accord with the experimental facts about 
gravitational and electromagnetic forces, and have never been derived by 
any other theory. Here they are consequences of fully exploiting the three 
axioms of this theory. 

A further interesting consequence of this analysis is that it is in full 
accord with the interpretation of inertia according to the Mach principle. 
We will see that, in accordance with this principle, the inertial mass of any 
quantity of matter is a measure of its coupling with all of the other matter 
within a closed system--if all of the other matter in the system should tend 
to vanish, the mass of the remaining quantity of matter would correspond- 
ingly go to zero in an explicit way. 

Finally, it will be shown that as a consequence of Axiom 3, applied to the 
structure of these equations, as the local domain is approached, the distribu- 
tion of values of the inertial mass of matter in the microscopic domain 
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approaches a discrete spectrum. It is important within this theory that the 
actual limit of a discrete spectrum cannot be reached--it can only be 
approached arbitrarily closely, corresponding to arbitrarily sharply 
peaked values for the mass spectrum. But in the actual limit--which in this 
analysis corresponds to a 'free particle'--the inertial mass values all go to 
zero. The 'free particle' states do not exist within this theory simply because 
of the implication of the Mach principle that the interaction between 
matter and matter can never be 'off', even though it can be arbitrarily weak. 
This consequence of the theory implies that the use of a mass parameter in 
the special relativistic form of the matter field equations (a form that 
approaches the form of the quantum mechanical equations) is in fact 
inserting an (averaged) field (in the curved space-time) into equations that 
are approximated by fields in a flat space-time. 

The Appearance of Quaternions 
Before presenting the derivation of the matter field equations and the 

inertial mass of matter, let us briefly discuss some of the basic features of 
quaternion analysis that will play an important role in the derivations to 
follow. 

In the early part of the nineteenth century, W. R. Hamilton discovered 
the quaternion number field as a generalization of the field of complex 
numbers (Halberstam & Ingram, 1967). He found that the proper generaliz- 
ation of the basis elements (1, i) of a complex number are the set of four 
basis elements that in fact are in one-to-one correspondence with the unit 
matrix, %, and the three Pauli matrices, 0-,, i.e. 

x + iy =- z(1,i) --> 0-#x ~ = Q(%, 0-1, 0"2, 0-3) (2.1) 

Of course, Hamilton did not yet know about matrix algebra; it was not yet 
invented. But the properties that he discovered must be satisfied by the 
basis elements of the quaternions, in order that they satisfy the rules of an 
associative algebra, were in one-to-one correspondence with the multiplica- 
tion and addition properties of the unit matrix and the three Pauli matrices. 

Thus Hamilton discovered that, in effect, the three Pauli matrices are 
the proper generalization of the basis element i of a complex number. The 
latter were introduced about a century later by Pauli in order to describe 
the empirical facts about the angular momentum of a SchrOdinger electron. 
The derivation of this effect, from first principles, followed from Dirac's 
discovery that to make the Schr5dinger-type equation relativistically 
covariant, it became necessary to extend from the complex scalar field 
description to a complex multicomponent field description--the spinor. 
The general structure of Dirac's spinor field equations--in their most 
primitive form--will play an essential role in the analysis of this section. 

It follows that the generalization of pairs of fields, in terms of the complex 
function, u(x,y) + iv(x,y), are the quadruplets of fields, in terms of the 
quaternion function %AU(x) [see equation (1.2)], where x represents the 
quadruplets of points in 4-space (x0, x~, x2, x3). Similarly, the generalization 
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of the differential operator that underlies the calculus of complex functions 
is a quaternion differential operator, 

d/dz ---> cr~O~' (2.2) 

The conjugate complex number, ~(1,-i), is defined so that the product z~ 
is invariant with respect to rotations in the two-dimensional coordinate 
system. Similarly, the conjugate quaternion, ~(-ao;  ca) (or 0(%; -r 
where Q(~ = - Q Q )  is defined so that Q(~ (or QQ) is invariant to rotations 
in the four-dimensional coordinate system. The conjugated quaternion (~ 
is equivalent to a time-reversal of Q, and Q is equivalent to a space-reflection 
of Q. These are physically equivalent representations for the conjugated 
quaternion. 

It follows from the definition of the conjugated quaternion that the 
product of the quaternion first-order differential operator, % a~', and its 
conjugate operator, 4~0~, is an invariant. Writing this out, we find that 

(% 0")(ev 0 ~) = ( 0 0 )  2 - V z - [ ]  ( 2 . 3 )  

where [] is called the D'Alembertian operator. 

Spinor Field Equations 
We have indicated in the preceding section that the most primitive 

irreducible representations of the Poincar6 group are in terms ofa quaternion 
number field. Thus the quaternion representation of the differential operator 
to appear in a relativistically covariant field equation is more primitive than 
any other form of differential operator. Indeed, we have seen above that 
the D'Alembertian operator factorizes into a product of a quaternion 
differential operator and its conjugate operator. This implies that the more 
basic differential equation would be the one governed by the (first-order) 
differential operator %0 ~, rather than the equation governed by the 
(second-order) operator [Z. This, in fact, is the reason that the Klein- 
Gordon equation was found by Dirac to factorize into equations in spinor 
variables--the basis functions of the quaternion operators are the 2- 
component spinor functions. In terms of these variables, 

[o-, 0" ~7 = -2iX (2.4a) 
(Q _ 5z) ~/= 0 --> [~, 0" X = -A~/ (2.4b) 

where ~7 is a two component spinor field and X = E~7* is the time reversal 
of 7. E is the Levi Civita matrix [equation (1.7)]. Had we chosen the space 
reflection conjugation O rather than the time-reflection representation Q, 
equations (2.4) would then take the (physically equivalent) form in terms 
of the space-reflected spinor variables (~=, D solving the equations 

or u 0 t' ~ = - i ~  (2.4a') 
([] - 5 2) ~ = 0 --> 6, 0" ~ - iZf  (2.4b') 
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As indicated in the preceding section (in terms of the spinor variables of 
the electromagnetic field) relativistic covariance of equations 2.4 is 
preserved if and only if 

x(x) 

where 

= sT(x) 

x ' ( x ' )  = ( s * )  -1 x(x) 

S t % S = (Ox"/Ox ~') ~ 

It then follows that the invariants of this formalism are 7/t~e~7, xtrEx and 
~/t X. The latter invariant can be expressed in the form I~ +/2, where 

I~ = �89 x + X%?) (2.5a) 

I2 = �89 X -- X%I) (2.5b) 

Since ~/and X are the reflections of each other, it follows that I~ is a scalar 
invariant with respect to reflections and that/2 is a pseudoscalar it is odd 
with respect to reflections. [Similar scalar and pseudoscalar invariants follow 
from the formalism (2.4') with reflections here referring to the spatial 
coordinates rather than the time coordinate, the corresponding invariants 
will be called/1' and h'.] 

The usual bispinor form of Dirac's equation can be obtained from 
equations (2.4'), e.g., by combining these equations in such a way so as to 
yield a new equation in the 4-component function 

The equation in ~b takes the well-known form 

(~,, a" + a)~ = 0 (2.6) 

where Vu, the Dirac matrices, are built up from the Pauli matrices and the 
unit two-dimensional matrix (i.e. the quaternion basis elements) as follows: 

, 0 = _ i ( ; 0  _ 0 % )  y k = _ i ( 2 g  k ;k) 

According to the set of transformation properties of the field equation 
(2.6) that leave it relativistically covariant, there is only one scalar invariant 

13 = ~bty0 ~b (2.7) 

that is bilinear in ~b, but there is no pseudoscalar invariant. This can be 
seen by substituting the form of ~b in terms of ~ and ~ (above) into equation 
(2.7). It is found that 

but that there is no counterpart in this formalism for the invariant 12' of 
the 2-component spinor formalism. 



A NEW THEORY OF ELEMENTARY MATTER--PART II 4 6 7  

We see, then, that the formal manipulation which led to the bispinor 
form of the equation (2.6) from the (more natural) form (2.4') was equivalent 
to the process of eliminating the pseudoscalar invariant I2'. In the language 
of quantum mechanics, this corresponds to extracting from a formalism 
that does not generally conserve parity, a part that does conserve parity, 
and eliminating the other part that would destroy reflection symmetry. 
Thus, this new (4-component bispinor) formalism is more symmetric than 
the theory of relativity would require, since this theory is based only on a 
symmetry depending on covariance with respect to continuous coordinate 
transformations between relatively moving coordinate frames. 

The 2-component spinor form of the field equations does fully exploit 
the underlying symmetry of relativity theory, since it is covariant only with 
respect to the continuous transformations of the Poincar6 group. The 
implication is that this formalism is more general than the bispinor formal- 
ism in the sense that it entails more invariants and conserved quantities to 
be associated with the observables. The bispinor formalism is, of course, 
useful whenever one wishes to describe experimental effects that are 
reflection symmetric. However, it has a disadvantage in that it masks 
other effects that are sensitive to the feature of the formalism that it is not 
really a theory that recognizes the reflection transformation in time or 
space. An example of this remark will appear later on, where it will be 
shown how the inertial mass of matter can be related to a mapping between 
time-reversed (or space-reflected) 2-component spinor variables in a 
curved space-time. 

The extension of the field equations (2.4) to include interaction--an 
essential ingredient within the theme of this paper--is accomplished by 
generalizing the quaternion operator % Ou to the form (r O~ + j ) ,  where 
the quaternion J is geometrically a scalar (as is a ,0 , )  and is a functional 
that depends on all of the fields, associated with the rest of a closed system, 
that couple to the field ~/. Thus, for each interacting component spinor 
field ~") of a closed system, the special relativistic form of the coupled 
equations that determines this field is 

( ~  0K + -ft) ~/") = --At X ") (2.8a) 
~ ' -  (i) ,q(~) (~u 0u + ~ 0  X = -Ai (2.8b) 

where 
J i  = Ji(V"),V~2), . . . ,~(t- ' ,~/"+" . . . .  ) 

is the interaction functional and 

j =  J ,  

is the time reversal of this functional. 
The field equations (2.8) are then a set of coupled nonlinear spinor 

equations that describe the closed system. According to the axioms of this 
theory, the conclusion was reached (in the preceding sections) that these 
equations must be covariant with respect to the interchange of the variables 

31 
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which are associated with the interacting components of the closed system 
('observer' and 'observed'). This form of the field equations will be seen 
to lead to the eigenfunction form of the equations of quantum mechanics, 
in the asymptotic limit of sufficiently small energy-momentum transfer 
between the interacting components of the system. 

The remainder of this section will be devoted to a derivation of the inertial 
manifestation of the interacting matter, as it is defined through the term A in 
equations (2.8). 

The insertion of )~ (= mc/h) into equation (2.8) in the usual analysis 
assumes that the inertial mass of any quantity of free matter is one of its 
intrinsic properties. On the other hand, the interpretation of inertia, 
according to the Mach principle, requires that, most generally, 2, should be 
a function of the entire closed system--that it has to do with the dynamical 
coupling between matter and matter. Incorporating this idea with the 
principle of general relativity--which implies that all of the manifestations 
of interacting matter can be represented by the relation between the points 
in space-time (i.e. geometry)--it follows that instead of inserting a mass 
parameter into equation (2.8)--to be adjusted later to the data--we should 
be able to derive this term as a function of the properties of space-time. 

From the topological point of view, we may take the structure of the 
field equations (2.8) as representing a particular mapping between time- 
reversed spinor fields, with the mass parameter playing the role of a measure 
in this mapping. The procedure in the derivation to follow is then to omit 
this parameter from the equation and, instead, to generalize the quaternion 
operator au 0 ~' by expressing it in a Riemannian space. The aim then is to 
find the particular mapping whose limiting form should give the special 
relativistic form (2.8) of the matter field equations, with the mass parameter 
appearing as a limiting property of a field that appears in the general form 
of the mapping. The assumption, then, is that the most primitive explicit 
expression for the inertial mass of interacting matter is in terms of the way 
in which it appears through these field variables in the generalization of 
equation (2.8). 

Inertial Mass From Geometry 
Our first task in this program is then to generalize the quaternion differ- 

ential operator au 0~' so as to express it covariantly in a Riemannian space- 
time. We start by redefining the invariant differential increment ds of a 
Riemannian space. Taking the hint from the fact that the irreducible 
representations of the Einstein group (and the Poincar6 group) obey the 
algebra of quaternions, we will define ds as a quaternion (rather than a real 
number) as follows: 

ds =qU(x) dx~ (2.9) 

Here, the field q~'(x) is geometrically a 4-vector. But each of the four 
components of this vector is, algebraically, a quaternion--thus depending 
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on four real fields. The field q" is then a 16-component entity and ds is a 
sum of four quaternions--therefore it is a quaternion. 

To construct a real number from a quaternion we multiply it by its 
r 

conjugate ds and define the quantity to be the real number ds 2 of a 
Riemannian space, i.e. 

dsds= ~ ( q U ~  +q~gtU)dxudx~-g~'~(x)dxudx~ (2.10) 

The symmetrization on the left side of equation (2.10) results, of course, 
from the fact that dx, and dxv are commuting variables. The minus sign is 
chosen because of the way that these fields are normalized. 

In the local limit, corresponding to very close separations in space-time, 
we require (for empirical reasons) that 

q~'(x) Ioe lin~ O.t t q " ( x )  ,!OC lin~ ~/~ 

With this limit and the commutation properties of the Pauli matrices, it 
is readily verified that the corresponding limit of  the squared increment ds 2 
is the Lorentz metric, i.e., 

dsffs toc> dxoZ_dr z 

i.e. 
_�89 ,oo ; ( l - l - l - 1 ) 3 u ~  

The field variables qV(x) solve equations that are a factorization of 
Einstein's field equations in g,V. The procedure followed to derive these 
equations was to use the variational principle, expressing the Einstein 
Lagrangian R as a function ofq ~ and qu (rather than gU0 as the independent 
variational parameters. This results in equations that behave geometrically 
and algebraically as q~' (rather than gVV). These correspond to 16 relations 
at each space-time point. It is a more general description of the geometry 
than in Einstein's field formalism, since the latter entails only 10 relations at 
each space-time point. 

It was shown (Sachs, 1968b, I969b) that when the equations in qU are 
iterated once (with a conjugate solution q0--thereby forming a second-rank 
tensor representation of these equations--and when the iterated equations 
are expressed as the sum of a symmetric tensor part and an antisymmetric 
tensor part, the former is in one-to-one correspondence with Einstein's 
equations. Thus, the field qV(x) contains all of the physical predictions of 
Einstein's equations and therefore predicts the gravitational manifestations 
of interacting matter. 

We have seen, then, that the generalization of the constant matrices % 
in the quaternion operator % 0~' are the fields q~(x). The generalization of 
the ordinary derivatives a,  are the covariant derivatives, defined as follows: 

r/;~, = Or,- q + $2~, r/ (2.11) 
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where/2~ is the 'spin-affine connection'. This term arises (as in the tensor 
formulation) because of the fact that the ordinary derivatives of multi- 
component variables are not covariant entities in a curved space. An extra 
term must be added in order to force covariance on these operators. The 
explicit form of/2~ follows from the vanishing of the covariant derivatives 
of the quaternion fields, qw and the fact that the latter is a vector, geometric- 
ally, and its algebraic properties define it as a second-rank spinor, of the 
type ~/* | r/. The explicit form of the spin-affine connection is the following 
(Sachs, 1964a): 

/2, = �88 p + Y'~utT~)qp = --~4r + F~l,q~ ) (2.12) 

From this expression, we see that, geometrically,/2~, behaves covariantly 
as a 4-vector. On the other hand, it is not a covariant entity with respect to 
its spin degrees of freedom. 

The generalization of the differential form cr~ a t ~ in a Riemannian space 
is then qU~7;u. This entity is geometrically a scalar and algebraically a third- 
rank spinor. We shall set this form equal to - J r / t o  yield the generally 
covariant spinor field equation 

q~ ,4 i) = - J ~  ~/") (2.13) "l;bl 

It is important to note that our choice of the right-hand side of equation 
(2.13) to be (explicitly) linear in ~7 is based on Axiom 3. According to 
this axiom--the assertion of a correspondence principle--equation (2.13) 
must approach the form of the eigenfunction equations of quantum mech- 
anics in the local, low energy limit. This limit is approached when the 
functional 

J ~ ( ~ " ~ , . . . , ~ " - ' , r / " ~ ' , . . . )  -+ J ( x )  

This corresponds to the approximation in which one can describe the 
individual fields ~") in an average background 'potential', analogous to the 
approximation in the nuclear many-body problem where one considers 
the nucleons in a nucleus, one at a time, in an average background field of 
all of the other nucleons. With this limit, the field equations (2.13) take the 
form of quantum mechanics. (This will be discussed in more detail in the 
succeeding sections.) 

To complete the derivation of the particular mapping that is sought in 
order to identify the inertial mass field, consider the following hermitian 
and anti-hermitian matrices (Sachs, 1968a): 

A• = qt*/2~ 4- h.c. (2.14) 

It follows from the time-reversal properties of the quaternion fields that 

J q . =  ~v = cq~,* r J / 2 u  = --/2.* ~A_+ = 4-,A+_*, (2.15) 

The following identities are then readily verified 

( JA~)  A+_ = :;(det A+) ao = 4-[det A• exp (i~) ao (2.16) 
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where the continuous set of values of the real variables, detA• are mapped 
in a Riemannian space and 8 = 0  when detA+ < 0  and 8=~r  when 
detA+ > 0. 

The matrix equation constructed from equation (2.16) 

[(~A.),4+_1 ~7 = • 2 exp (l"8) r/ (2.16') 

may be factorized as follows: 

A+[r/exp (-i8/2)] = 2~+[ x exp (i3+)] (2.17a) 

J A + (  X exp (i3+)] = 2~+[~7 exp (i8/2)] (2.17b) 

A_[~/exp (-i8/2)] = 2i~_ [X exp (i8_)] (2.18a) 

J A _  Dr exp (i3_)] = 2ie_ [~ exp (i3/2)] (2.18b) 

where 
(2~+) 2=  IdetA~] 

and the relationship between the time-reversed spinors is 

X = E~/* ~ = -EX* 

The factorizations 2.17 and 2.18 of the matrix equation (2.16') are unique 
only up to an arbitrary phase, relative to -q and X- Since these phases can 
be adjusted continuously without altering the form of the factorization, the 
equations may be grouped so that the relative phase between ~/and X in 
(2.17) is the same as their relative phase in (2.18). In this way, equation 
(2.17a) (or equation (2.17b)) can be added to equation (2.18a) (or equation 
(2.18b)) without the need to explicitly specify the relative phase. 

Combining the definition of the matrices A• (equation (2.14)) with the 
sum of equations (2.17a) and (2.18a), the following relationship between 
the time-reversed spinor variables is obtained: 

qt'f2t,~ 1 = (o~+ + io~_)X =_ )~ exp (kp) x (2.19) 

where 
= mod(~+ + i~_) = �89 + [detA_]] 1/2 (2.20) 

The phase angle of the complex function in equation (2.19) is 

cP = tan- '  (~- ]  = t a n - ' \ ~ + /  de~+detA-,/2 (2.21) 

The geometrical relationship that was sought between the time-reversed 
spinor fields in a Riemannian space is then given in equations (2.19), 
(2.20) and (2.21). 

The time-reversed equation that accompanies eq. (2.19) is the following 

___~u s X = A exp (-i~) ~/ (2.22) 
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The Dirac Equation in General Relativity 
Inserting equation (2.19) into (2.13) (and suppressing the indices i) we 

have the generally covariant field equation 

q~ 0~ ~7 + ,~ exp (i~) X = -J~7 (2.23a) 

The time-reversed equation that accompanies this one is: 

~ '  0~ X + ~ exp (-i9) ~ = -~7 X (2.23b) 

If it were not for the phase factor, exp (+i~0), these would have the form of 
the 2-component spinor Dirac equation in a Riemannian space-time. To 
eliminate the phase, it is necessary to impose one further physical restriction. 
This is the requirement that (according to Axiom 3) there must be an 
equation of current conservation in the local limit of the theory. This 
equation takes the form 

Ou(~l* ou ~/) = 0 (2.24) 

in terms of the 2-component spinor formalism, or the form 

0u(~b, ~,0 ~, qg) = 0 (2.24') 

in terms of the bispinor formalism. The reason for this requirement has to 
do with the interpretation of the spinor field in terms of aweighting function. 

The generally covariant extension of equation (2.24) is 

(~Ttq ~ ~/);u = 0 

It is well known that the imposition of gauge invariance automatically 
leads to the current conservation equation. This corresponds to the follow- 
ing requirement on the 2-component spinor field equations: 

i 
-+ ~Texp(-i~/2), X ~ xexp(ig/2) ~r de -+ J +~qUOu9 

(2.25) 

Using equation (2.25), it is readily verified (Sachs, 1968a) that the phase 
factors, exp(• in equation (2.23) can be transformed away--leaving the 
generally covariant spinor field equations 

q~ Ou~ I + A X = - J~ /  (2.26a) 

~u 0, X + AT = -J~X (2.26b) 

which have the Dirac form in terms of the 2-component spinor variables, 
approaching the linear eigenfunction form in the local non-relativistic 
limit. 

We have seen that the form of the Dirac equation can be derived from a 
particular mapping between time-reversed spinor variables in a Riemannian 
space. The derived geometrical relationship is in terms of the field ~---the 
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modulus of a complex variable. The latter field, which plays the role of the 
inertial mass parameter in these equations, is then apositive-definitefunction. 
Imposing now the equivalence between the gravitational and the inertial 
mass of interacting matter, it follows that gravitational forces can only have 
one sign--they are either attractive or repulsive in all cases. Since we observe 
that they are attractive in at least one case (e.g., the earth-sun attraction), 
the theory predicts that gravitational forces can only be attractive. This 
derived feature of gravitational forces is, of course, in agreement with all 
of the known experimental facts and has never been derived from first 
principles by other formulations of general relativity. It results here from a 
fundamental unification of the gravitational and inertial features of matter. 

The Mass Spectrum 
A second important feature of the derived mass field is that it is indeed a 

measure of the dynamical coupling between this matter, described by 
(~/, X), and all of the surrounding matter of a closed system. For, according 
to equation (2.20), ~ depends on the curvature of space time, which in turn 
depends on all of the matter in the environment of any test matter that is 
described with the field ;L As the surrounding matter should diminish, the 
spin-affine connection correspondingly approaches a null matrix and )t 
tends to zero, in accordance with the general requirement of the Mach 
principle. It is important, however, that the sensitivity of the mass of matter 
to the detailed behavior of its environment (according to this analysis) is 
pronounced only in the microscopic domain, where the matter equations 
of the type (2.8) play an important role. 

Combining equations 2.19 and 2.22, we have the relation 

(-q~' s *)(q" f2,) r/= ~2 ~/ (2.27) 

As indicated earlier, as ~r --> J(x),  the solutions of the spinor field equations 
(2.26) approach the form of the solutions of the linear eigenfunction equa- 
tions of quantum mechanics. Thus, in this limit, the set of solutions of these 
equations approach the functions which are the elements ofa Hilbert space, 
{Vs}. In this form, then, equation (2.27) can be re-written in terms of a 
spectrum of (averaged) mass values. Thus, this theory also predicts that in 
the microscopic domain, the distribution of values for the inertial mass of 
matter approaches a discrete spectrum: 

)ts 2 = (r/sl(--qta-(2.t)lim(qV~v),im[ "r/s ) (2 .28)  

This result is also in agreement with the general property of matter in the 
microscopic domain (and has not been predicted by other theories of 
elementary particles)--although at this stage, numerical results have not 
yet been obtained for the masses of elementary particles. 

One further result emerges from this analysis. This is the feature that 
because the field operator in equation (2.27) does not commute with the 
operator in the equations (2.26) (because quaternions do not commute) 
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the eigenvalues of the mass field, in terms of the solutions of equations 
(2.26), must be obtained by first diagonalizing the operator in (2.28). Since 
this is a two-dimensional matrix, it follows that for each solution ~, of the 
asymptotic form of the field equations, there are two mass values--the 
spinorfieM variables predict mass doublets. Each of these two 'particles' then 
are identical in all of their physical properties except for their masses. A 
well-known mass doublet of this type is the electron-muon pair. The 
quantitative substantiation of this particular result, however, awaits 
numerical predictions of the theory. 

Electromagnetic Coupling 
The application of gauge invariance on the spinor formalism led to the 

fact that a vector coupling term 

~q~ Ou q~ 

must necessarily enter into these equations. If we now identify this term 
with the electromagnetic potential, it follows that if 0,cp is a non-positive- 
definite function, then electromagnetic forces are either attractive or 
repulsive. According to the definition of the phase q0 [equation (2.21)] the 
explicit form of 0uq~ is as follows: 

O~ q~ = Outan-l[detA_/detA+[I/z 

1 
= ~ { [ [ d e t A  ~1 0,ldetA_ [ - [det A_ I 0~]detA~ []/[detA_detA+[ ~/2) 

(2.29) 

It is clear that the right-hand side of this equation can be positive or negative, 
depending of the values of the metrical field variables that appear in the 
expression. Thus, it is concluded that if electromagnetic forces are defined 
most primitively through their appearance in the matter field equations, 
they can be either attractive or repulsive. This result, also in agreement with 
the experimental facts, has not been derived from first principles by other 
theories of matter. 

Summing up, we have shown that: (1) The generally covariant form of the 
Dirac equation (which has the limiting Schrrdinger form) can be derived 
from a particular mapping between time-reversed spinor variables in a 
Riemannian space. (2) The inertial mass of matter is derived from the 
metrical field. It is found to have the following features: (a) It is a positive- 
definite function implying that gravitational forces can only be attractive 
(b) It has a spectrum of values in the microscopic domain that approaches 
discreteness in the asymptotic limit as the interaction between matter and 
matter becomes sufficiently weak. (c) The mass of a microscopic quantity 
of matter tends to zero as its massive environment correspondingly tends 
to zero--i.e., the mass of a 'free particle' is zero. (d) elementary particles 
occur in mass-doublets. (3) As a consequence of the requirement of in- 
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corporat ing a current conservation equation in the formalism, gauge 
invariance must  be imposed. This in turn leads to the necessary appearance 
o f  a vector coupling term in the matter  field equations. Identifying this 
term with electromagnetic forces, it is found,  because o f  the dependence of  
this vec to r  coupling term on the metrical field, that  the electromagnetic 
force is non-positive-definite. This result then implies that electromagnetic 
forces can be attractive or repuls ive--a  result that  is also in agreement with 
the experimental facts. 

In  the next article in this series, we will study the special relativistic 
form of  the matter field equations that were derived here. This will be 
applied in particular to the case o f  electrodynamics for a closed system that 
approaches the description of  a many-particle system in quantum 
mechanics. 
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